Extratropical Cyclone Clouds: Impact on Cyclone Strength and Climate

> James B. Polly William B. Rossow

City College of the City University of New York

NOAA NESDIS CORP Science Symposium 2014 September 09

> <ロ > < 団 > < 臣 > < 臣 > 三 2000 1/26

Topics

Introduction and Motives

What constitutes a cyclone? What is its role? Research Objectives The MCMS Dataset

Analysis of Cyclone Tracking Cyclone Center Properties

Classification and statistics of cyclones Distributions and classification

Seasonal Variability of Classification Interannual trends of classification

<ロ > < 回 > < 直 > < 直 > < 直 > 三 2/26

Conclusions and acknowledgements

What constitutes an extratropical cyclone?

A few introductory remarks.

Rossby wave cartoons.

- ECs are associated with atmospheric Rossby waves.
- Solutions to equations of motion for rotating stratified fluid.
- Upper level disturbance leads to surface motions.
- "Cyclone" refers to low pressure half of these motions collectively, and is somewhat nebulous.

◆□> <圖> <필> <필> < => < =</p>

What role/purpose does the extratropical cyclone serve? Equilibrate the polar temperature gradient.

Left: Northward transport of energy.

(a) total, (b) transient, (c) stationary, (d) mean meridional overturning (Peixoto and Oort 1992).

Below: Rossby wave induced activity.

Transient waves

Northern Hernisphere Composite Sector (IR Ch 4)

イロト イポト イヨト イヨト

What role/purpose does the extratropical cyclone serve? Redistribute mass, specifically moisture.

Above: Contours: 500 hPa geopotential height; shading: temperature; barbs: wind velocity; red line: frontal transect. (Posselt et al., 2008).

Below: (a) CloudSat observed and (b) ECMWF simulated radar reflectivity.

<ロト < 置 > < 置 > < 置 > < 置 > 2 < 2 </p>

Research Objectives

Direction and scope of this work; dissertation goals.

Understand what factors affect development and lead to spectrum of strength.

- Is there a observable pattern favoring rare strong storms opposed to frequent weak storms?
- Is one type of rare storm doing all the poleward transport work, or does the complement of more frequent cases do more/comparable work?

Determine role of cloud diabatic heating in storm evolution.

- Vertical heating profiles for cloud types associated with cyclones suggest dynamical impact (Haynes et al. 2011).
- Latent heating frequently considered, not cloud radiative heat.

MCMS Cyclone Tracking Algorithm

Modeling Analysis and Prediction (MAP) Climatology of Midlatitude Storminess

Above: For every grid, search adjacent grids for SLP minima. Identify centers by looking for closed SLP contours (Bauer).

Below: Regions of storminess contained in outer closed SLP contour. Entangled lows identified (Bauer).

MCMS Cyclone Tracking Algorithm

Modeling Analysis and Prediction (MAP) Climatology of Midlatitude Storminess 1979-2012 NCEP/NCAR 2

12:00 UTC 1991 Oct 30, Halloween Nor'easter at peak intensity (Bauer).

- Searches every grid at every time step, using a filter sequence to track identified systems between steps.
- Attributes grids to cyclone center, account for entangled lows.
- Distinguish stormy and non-stormy regions.
- Treatment for known SLP tracking problems, merging/splitting, etc.

<ロ> (四) (四) (三) (三) (三)

Distributions of center grid SLP

Zonal Mean Cyclone Center SLP v. all SLP

Distributions of (area derived) equivalent radius

First attempts to define some strength metric

Geostrophic Balance (GSB):

$$-fv \approx -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
$$fu \approx -\frac{1}{\rho} \frac{\partial p}{\partial y}$$
$$|\mathbf{u}_{\mathbf{g}}| = \frac{1}{\rho f} \nabla p$$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 12/26

Coriolis parameter: $f = 2\Omega \sin \phi$ Horizontal velocity: u, v.

First attempts to define some strength metric

Cyclone center depth calculated |**u**g from SLP minima to largest surrounding closed SLP contour. Use as wi

$$|\mathbf{u_g}| \approx \frac{1}{f} \frac{\partial p}{\partial r} = \frac{\partial p}{fR}.$$

Use as wind speed proxy.

Distributions of $\partial p / \partial r$ (NCEP/NCAR 2)

<ロト < 団ト < 臣ト < 臣ト 三 32%の 14/36

Classification and statistics of cyclone centers

Percentile separation and classification

	2208	1979-2012 Cyclone Classification, $n=1168265$								
	2200	7			8			9	$\Sigma_{7,8,9}$	=33.10
1)			$\begin{array}{c} 0.319 \\ \text{NH: 2} \\ \text{SH: 1} \\ \text{DP} \\ \mu: 0.9 \\ \sigma: 0.5 \end{array}$	% 2461 126 RAD 841.2 188.7		6.63 NH: SH: DP μ : 5.7 σ : 1.5	% 46678 30811 RAD 806.2 163.7		26.16 NH: $\frac{1}{2}$ SH: 1 DP μ : 17.6 σ : 8.1	5% 154525 51072 RAD 1009.8 274.6
s (kn	643	4			5			6	$\Sigma_{4,5,6}$	$_{5} = 35.12$
uivalent Radiu			4.789 NH: 2 SH: 2 DP μ : 1.6 σ : 0.8	% 27370 8427 RAD 406.7 73.0		24.8 NH: SH: DP μ : 4.5 σ : 1.5	8% 141365 149277 RAD 474.8 89.6		5.479 NH: 3 DP μ : 10.9 σ : 2.6	% 31317 32543 RAD 566.1 68.4
Eq	344	1			2			3	$\Sigma_{1,2,2}$	3=31.78
			27.57 NH: 1 SH: 1 DP μ : 0.4 σ : 1.0	7% 142059 80006 RAD 203.5 84.7		4.20 NH: SH: Σ DP μ : 3.2 σ : 0.7	% 22630 26434 RAD 301.2 35.5		0.019 NH: 2 DP μ : 11.8 σ : 3.4	% 140 24 RAD 222.3 73.7
	22		$\Sigma_{1,4,7} = 32.65$			$\Sigma_{2,5,8}\!=\!35.71$			$\Sigma_{3,6,9} = 31.64$	
	-	Z		č	8 Depth (hPa)				.72	

<ロト < 部 ト < 差 ト < 差 ト 差 2000 15/26

Distributions of Classification

Center $\partial p / f \partial r$

Distributions of Classification

Center $\partial p / f \partial r$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><17/26

Distributions of Classification

Center $\partial p/f\partial r$

Locations of DP-RAD Groups 8 and 9

Climatological lows, storm tracks, and topography

Locations of DP-RAD Groups 8 and 9

Climatological lows, storm tracks, and topography

<ロ> (四) (四) (三) (三) (三)

Monthly Variability

Without Classification, All Cyclones

Monthly Variability DP-RAD Group 6

Monthly Variability DP-RAD Group 9

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ ≧ 2208

Interannual Trends of Classification

Combination of DP-RAD Groups 6, 8, and 9

イロト イポト イヨト イヨト 三日

Interannual Trends of Classification DP-RAD Group 6

- ▲ ㅁ 돈 ▲ 큔 돈 ▲ 큔 돈 🖌 좀 😪

Conclusions and acknowledgements

- Compute cloud radiative effects and precipitation associated with various DP–RAD categories.
- Evaluate our strength and classification system using other relevant dynamical and thermodynamical quantities (e.g., vorticity, water vapor).

<ロ ト < 回 ト < 直 ト < 直 ト 三 20 000 26 / 26

 Incorporate lifetime and evolution information using the developed classification system.

Acknowledgments:

- ► W. B. Rossow
- J. F. Booth
- M. Bauer